Thanks to Hannes DG1GGH of ESOC, we now have an idea what kind of precision is required for the Phobos flyby experiment. The answer is in the comments to this very informative and interesting post on the Mars Express blog from today. According to Hannes, they are expecting the influence of Phobos to cause a maximum deviation of 400 mHz from the nominal Doppler shift. Yes, that’s milli-Hertz, not mega-Hertz.
Obviously, this is much lower than what I had in mind when I first read about the experiment two days ago. I was thinking more along tens, maybe hundreds of Hz. Had I known this in the beginning I probably wouldn’t have considered the experiment at all. In fact, I wasn’t even aware of that measuring with such accuracy and precision was possible. Not that 400 mHz is anything special on it’s own – I can easily create a tone generator that is precise within 10 mHz. But in this case we have to keep in mind that this 400 mHz is to be considered together with an 8.4 GHz signal coming from 117.5 million kilometers away. That’s many decades in the same equation!
For the simple setup I was considering this constraint would require me to keep all oscillators in the system stable within a fraction of this limit. I could not have have achieved that with a 7.15 GHz oscillator mounted outdoors on the antenna. I don’t know the stability of the Kuhne LNC, but I am used to see “1 parts per million” in similar cases. 1 ppm @ 7 GHz is … you see my point 😉
The second error source in the chain is the USRP and the RF front end board itself. Despite all good intentions, it is still a system built of consumer grade components and millihertz precision is probably not what people have in mind when creating such devices. But I have put it on my list to measure the accuracy and precision using a good signal reference. More on that later.
Have a nice weekend!