Broken RFX1200 and more sensitivity measurements

I went to OZ7SAT today to do some measurements on the receiver boards. I wanted to see how the sensitivities compare to that of the WBX receiver that I have measured earlier using a CW signal and SSB receiver. The criteria was again to find the weakest signal that I could both hear and see on the spectrum scope and that I would be able to decode if it was a Morse code transmission. The limiting parameter is actually the spectrum scope, because I can hear tones much weaker than what is visible on the 512 channel FFT scope.

Continue reading “Broken RFX1200 and more sensitivity measurements”

UNITEC-1: The KU LNC 5659 C PRO has arrived

Yesterday I have received the C-band down-converter that I have ordered last week for the UNITEC-1 receiver station.

Watch video on YouTube.

I have also uploaded a few high resolution photos to my Picasa Albums:

Close-up the KU LNC 5659 C PRO low noise downconverter (LNC) from Kuhne Electronic.

Close-up the KU LNC 5659 C PRO low noise downconverter (LNC) from Kuhne Electronic.

The KU LNC 5659 C PRO low noise downconverter (LNC) from Kuhne Electronic. It converts 5.6...5.9 GHz to 400...700 MHz. Noise figure 1 dB, Gain 40 dB.

If you can’t read the specs, you can see them on my work-in-progress wiki page about the C-band Receiver Station.

Next step will be to connect it to the USRP equipped with the WBX and TVRX daughterboards (need 400…700 MHz receiver) and use some basic GNU Radio receiver software to test it using the OZ7IGY beacon, which transmits on 5.7 GHz (5760.930 MHz to be precise) and is definitely within our range. We can probably also find a signal generator for 5.6/5.7/5.8/5.9 GHz somewhere for better tests.

UNITEC-1: A New Deep Space Adventure

If everything goes according to current plans, JAXA will launch their PLANET-C spacecraft towards Venus on May 18, 2010. To fill out the empty space and available payload mass on the H-IIA rocket, they will also bring four university built cubesats into orbit. One of these cubesats, UNITEC-1, is very special in that it will follow PLANET-C all the way to Venus, although without any propulsive capabilities to make trajectory corrections it might end up somewhere else – we’ll see about that. Another special thing about UNITEC-1 is that it will be using the 6 cm amateur radio band. Cubesats have a tendency to be stuck on VHF and UHF frequencies for understandable reasons, so a 5.8 GHz signal from deep space will be an interesting challenge!

Our Mission

The mission for us radio amateurs is much more than just trying to listen for UNITEC-1. As I see it, radio amateurs can:

  1. Receive telemetry from an interplanetary spacecraft. UNITEC-1 will transmit telemetry on 5.84 GHz using very simple ON/OFF keying at 1 bit per second. This is quite exciting – I believe it will be the first time that we can receive unencrypted telemetry from an interplanetary spacecraft.
  2. Support the UNITEC-1 operators by tracking their craft. By providing them with accurate measurements of antenna pointing and Doppler shift, the operators can estimate the actual trajectory of the craft (remember, UNITEC-1 does not have any coherent tracking transponder on-board). More tracking data from around the world will improve their statistics significantly.

There is a formal call for support on the UNITEC-1 website requesting the global amateur radio community to help with tracking. You can also read about the actual mission UNITEC-1 will carry out during its journey to Venus. Be sure to check out the PDF file that gives many details relevant to tracking.

System Overview

We plan on assembling a system consisting of:

  • The 7 meter parabolic dish at OZ7SAT
  • A wide band feed that should be good up to 10 GHz
  • A Low noise down-converter (LNC)
  • Universal Software Radio Peripheral (USRP) with an appropriate RF daughterboard (probably WBX trasceiver or TVRX receiver)
  • GNU Radio-based software defined radio receiver

Functional diagram of the C-band receiver

We are going to need a C-band downconverter. From Kuhne we have several choices. One kind uses 1.4…1.7 GHz as IF, the other kind uses 400…700 MHz as IF. Since we already have about 40 meters of H1000-class cable between the antenna and the control room, we chose the UHF version to reduce the cable losses.

The LNC has been ordered and it should arrive next week. We have everything else on stock but will need to write some software. There is plenty of time though until 17 May. In any case, stay tuned for updates during the coming weeks.



Related articles:

Quick check of the WBX receiver

I had a few hours to spare tonight and I decided to do a quick check of the WBX receiver. Didn’t have time for much so I just compared it to the TVRX tuner using a strong FM broadcast station. The software was a simple WFM receiver constructed in the GNU Radio Companion graphical editor.

As you can see, both receivers have roughly 40 dB SNR, though the WBX seems to be slightly better. I also observed that the WBX has a “flatter” spectrum profile than the TVRX in particular at wider bandwidths.

Portable S-band Ground Station Update

I made good progress with the portable S-band ground station this week.

I took the receiver to the OZ7SAT lab to measure its performance. Using the USRP+DBSRX and no LNA we could easily detect a -132 dBm CW signal with modest FFT integration (fraction of a second) in a GNU Radio spectrum scope. Using the LNA we could go down to about -138 dBm, i.e. an improvement in SNR of 6 dB. These figures were measured at an SNR ~5 dB. This is excellent, but please note that this is not real “sensitivity” in the traditional sense because we were not demodulating or decoding the signal. We were simply integrating the spectrum for a fraction of a second to detect the presence of the signal. The measurements were done by sampling a 250 kHz wide spectrum.

Continue reading “Portable S-band Ground Station Update”

New vLog: Introducing the S-band Ground Station Project for LRO/LCROSS Reception

In this new video blog I am introducing a new project that has kept me occupied for a few weeks now: A low cost S-band ground station for receiving signals from NASA’s lunar spacecrafts LRO and LCROSS. More info at Receiving LRO and LCROSS. Based on the Universal Software Radio Peripheral (USRP) with DBSRX daughterboard, a super low noise preamplifier from Kuhne and GNU Radio software.