Dynamic File Names in GNU Radio Companion

I needed a quick USRP IQ data recorder today to record the APT downlink from NOAA satellites. This is really trivial to implement using the GNU Radio Companion, but I had to figure out how to use dynamic filenames to avoid overwriting previously recorded data. Of course, I could just rename each file when recording has finished but I am too lazy to do things like that. Using the current date and time in the file name seemed to be a good solution.

This quick how-to explains how to use the Python datetime module to generate a unique filename in GRC.

Read more

5.8 GHz Helical Feed for the 90cm dish

Yesterday was day 2 where we were repairing the broken Azimuth rotator and making a small 90cm dish ready to track UNITEC-1 on 5.84 GHz. Actually, we already fixed the rotator on Monday but we ended up mounting it 180° off and we decided to fix it properly instead of just correcting it in software.

Fixing the orientation of the Azimuth rotoator was very quick – it took only 17 minutes to get up to the mast, lift the antenna construction, change the orientation of the rotator and fasten the nuts and bolts again. We had the practice from yesterday.

Next item on the agenda was to make a small helix with two turns to feed the 90cm dish so that we can use this smaller dish for tracking UNITEC-1 in the beginning of the interplanetary cruise. We found some online helical antenna calculator to generate the design but that was more than 1 GHz off and it took a lot of tweaking and tuning to get it close to 5.8 GHz. Here are the results, photos and videos.

Read more

C-band Receiver Hardware for UNITEC-1

With only a few days left until the launch of UNITEC-1 (May 17) to Venus, we are getting ready to track it and I am trying to catch up on the documentation part – this time a brief description of the receiver hardware.

Recall the system architecture where the 5.84 GHz RF signal is converted to 640 MHz using the KU LNC 5659 C PRO low noise down converter, and…

C-band receiver architecture

This article gives a high level walkthrough of the receiver used to convert the 640 MHz IF to digital baseband, i.e. the blue box called USRP in the above diagram.

Read more

SSTV Robot OZ9STV with USRP and WBX

I was fooling around with the USRP / WBX on the 2 meter band tonight when I suddenly stumbled upon some very strong SSTV transmission. It turned out to be the OZ9STV robot located only a few kilometers from me. That explained why I had more than 40 dB SNR even though I was only using a bad whip antenna indoors.

Read more

Binaural CW Receiver with GNU Radio and USRP

Today I felt like doing an experiment that is not quite on my TODO list – a binaural CW receiver. A binaural CW receiver is a receiver that gives a spatial feeling while you are tuning. As I understand it, you have to use stereo where the signals move from one side to the other as you tune and are in the middle when you are tuned to the frequency.

Read more

Frequency xlating filter vs. complex multiplication

When I upgraded the simple GNU Radio receiver to single side band, I decided to separate the band pass filter and the frequency xlating filter and the frequency xlating filter got equipped with a wide low pass filter instead. The low pass filter is useful but really not important. Therefore, I decided to replace the frequency xlating filter with a simple complex multiplication (aka. local oscillator) and thereby save some CPU cycles – I figured that removing a filter would save something.

Read more